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THE GEOMETRY OF THE YANG-MILLS
MODULI SPACE FOR DEFINITE MANIFOLDS

DAVID GROISSER & THOMAS H. PARKER

0. Introduction

The moduli space # of self-dual connections on a compact Riemannian 4-
manifold carries a natural L? Riemannian metric. In [9] the authors explicitly
computed this metric on the moduli space .#;(S*) of self-dual k¥ = 1 SU(2)
connections on the standard 4-sphere. The result was a complete description
of .#,(S*) as a concrete Riemannian 5-manifold.! Its geometry turns out to
be that of a slightly distorted hemisphere of $°; in particular it has finite
diameter and volume and its boundary is isometric to S4 (up to a constant
conformal factor 472). In this paper we examine the Riemannian geometry of
the moduli space # of k = 1 self-dual SU(2)-connections on a general class of
4-manifolds: compact oriented simply-connected 4-manifolds M with positive-
definite intersection form. For such manifolds (M, g) the moduli space .# is
(possibly after perturbing the metric g) a smooth 5-manifold except at the
finite set of points {p1,- - ,pn} € # corresponding to the reducible self-dual
connections [8]. The well-known result of Donaldson [6] asserts that there is
a compact set K C .# such that .# — K is a disjoint union of N + 1 ends
(Figure 1). One end—the collar of .#—is diffeomorphic to (0,1) x M. Each
of the others is diffeomorphic to a cone on CP2? with vertex at a reducible
connection p; € .#. The basic question of whether .# has finite diameter and
volume depends on the geometry of the ends.

The L? Riemannian metric on .# is obtained from metrics on the infinite-
dimensional spaces used in constructing .#. This construction is standard,
and goes as follows (see [2], [8], [10] for details). Given a compact Lie group
G and a principal G-bundle P — M we consider the affine space .% of all
smooth connections on P and the gauge group & of all automorphisms of P
covering the identity. A connection A € &7 is called self-dual if its curvature
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1This has been done independently by Doi, Matsumoto and Matumoto [5].
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FIGURE 1

F4 is a self-dual 2-form (F4 = *F4). The moduli space # = .# (P, g) of self-
dual connections is the space S /T", where FZ C & is the set of self-dual
connections.

When G is equipped with a bi-invariant metric h, the metrics ¢ and &
determine inner products on the spaces Q2¥(Ad P) of k-forms with values in
the vector bundle Ad P = Px 449 (a bundle of Lie algebras; g is the Lie algebra
of G). We can then define Riemannian metrics on the spaces &, & /& and
A , as follows. First, at each A € &/ the canonical identification between the
tangent space T4%/ and 2! (Ad P) gives an L? inner product on &/ (obtained
by integrating the pointwise inner product against the Riemannian volume
form) which is invariant under the action of & on &/. This £-action is locally
free on the open dense set &7 * of irreducible connections and, by completing
& and & /& in appropriate Sobolev norms in the usual way, we can give
FB* = *|Z the structure of a Hilbert manifold. The L? metric on & then
descends to a (weak) Riemannian metric on %&* by declaring & * — #* to
be a Riemannian submersion (see {9, §2]). Finally, #™* = .# N.%" is a finite-
dimensional manifold (with singularities), and hence inherits a Riemannian
metric by restriction. We denote this metric by .

This L? metric can also be described in terms of harmonic forms. For any
self-dual connection A one has the “fundamental elliptic complex”

(0.1) 0 — 0%(AdP) %4 01(AdP) 44 02 (AdP) — 0,

where d 4 is the exterior covariant derivative and d, is da followed by the
orthogonal projection p_ onto the space of anti-self-dual 2-forms. The prin-
cipal stratum .#'* of .#* consists of the gauge orbits [A] of those A for
which dq: 20 — Q! is injective and d3: Q! — QZf is surjective. For such
A, the tangent space Ti4.#'* can be identified with the harmonic space
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#y = {w € M (Ad P)|d%w = 0, dyw = 0}. The metric on .#’* is simply the
restriction of the L? metric to #;4 (this is well-defined since the assignment
A #, is F-equivariant and & acts isometrically).

The analysis underlying these descriptions of the L? metric was described in
detail in a previous paper [9, §§1,2]. We will generally adhere to the notation
introduced in that paper, and will assume that the reader is familiar with the
background presented there.

The L? metric on .# is analogous to the Weil-Petersson metric on
Teichmiiller space, which had been studied extensively. In both cases it is diffi-
cult to make explicit statements about the Riemannian geometry because any
such statement necessarily involves global analytic quantities on the original
manifold. In fact, the metric on .# is more complicated because it inherently
depends on the metric on M, whereas the Weil-Petersson metric depends only
on the topology of the underlying Riemann surface.

In this paper we examine the geometry of the moduli space near the ends
depicted in Figure 1. The paper is divided into two parts, corresponding to
the two types of ends—the cones and the collar.

The first two sections are devoted to studying the geometry of the cones.
Our approach is to resolve the singularities of .# using the “based moduli

“space” M. Specifically, we fix a basepoint zo € M and consider the based
gauge group & = {g € ¥|g(zo) = Id} and its orbit space & = & /&. In §1
we prove that & is a smooth Riemannian Hilbert manifold with an isometric
SO(3)-action and that &* — " is a Riemannian submersion. Restricting to
self-dual connections gives a smooth Riemannian manifold A with an SO(3)-
action whose orbit space is .#. The map Ny 4 desingularizes the cones.

This viewpoint leads to a much more concrete picture of the geometry of
the cones in .#. Questions which a priori involve global analysis (perturbation
theory for Green operators, for example) are reduced to rather straightforward
questions about finite-dimensional Riemannian geometry. We analyze this in
§2, and obtain the following description of the metric and sectional curvatures
of the cones.

Theorem 1. Let (M,g) be a compact oriented 1-connected 4-manifold
with positive-definite intersection form, and let (M, #) be the modult space
of self-dual SU(2) connections on the bundle P over M with instanton number
k = 1pi(Ad P) > 1 (with its L* metric). Fiz a reducible connection [A] € ;.
Let go be the standard metric on P = CP4* =2 (see Definition 2.7). Then there
are a number rg, a netghborhood U of [A] in #y, and a diffeomorphism

F:(0,r0) xP = U — {[A]},
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which extends to a homeomorphism from the open cone [0,70) X P to U. In

this coordinate system:
(a) The metric satisfies

(0.2) F* 2 = dr? @ r%(go + O(r?)).

(b) Asr — 0, the sectional curvatures o of F* ¢ satisfy
d
—_ = 1
o (BT,X) 0(1),

o(X,¥) = S00(JX,¥) +0(1),

(0.3)

where X,Y € TP and J 1s the complex structure on P,

This theorem shows that both the metric and the sectional curvatures of
the cones in ./# are, to leading order, those of the standard cone on P. The
higher-order terms in the expansions (0.2) and (0.3) can be expressed in terms
of the Green operators of certain Laplacians constructed from the connection
A (see §2 for details).

The expansion (0.2) of the metric shows that U has finite volume and that
the radial rays to [A] in .# have finite length. Thus the geometry of the
cones is as depicted in Figure 1.

The second part of this paper is an analysis of the geometry of the collar
when (M,g) is as in Theorem I and £ = 1. In essence, our approach is
to compare the local geometry of /# in the collar with the corresponding
geometry of the moduli space .#;(S*), which was described in [9].

The collar consists of a self-dual connections (“instantons”) whose energy
densities | F4|? are sharply concentrated bump-functions. Each such instanton
A has unique center point p(4) € M and scale A(A) € Rt (cf. §4). These
define a map ,

(0.4) ¥: Collar of £ — 0(0, 2g) x M

which Donaldson [6, §III] has shown to be a diffeomorphism. The inverse
map ¥~! provides a convenient coordinate chart which we use to describe the
metric in the collar.

The most direct approach to computing the metric on .# is to identify
Tial# with the harmonic space /#; and evaluate the L?-norms of these w €
#Z4. Of course, for a general manifold (M, g) we cannot explicitly solve for
these w. Instead, we define in §3 a set of 1-forms {&4 € '(Ad P)} which
are approximately harmonic then [A] is in the collar. The span of these {4}
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defines a space T4 which approximates the tangent space Tiaj#. We then
compute the L2 norms of the {@4} and obtain estimates—with explicit A-
dependence—on how good the approximation is.

Our choice of the approximation T4 is motivated by analogy with the case
M = S*% In that special case, T4 is precisely {w = izF4}, where Z is a
conformal vector field on S* obtained by projecting a constant vector field
on R® onto TS* [9, Proposition 4.3]. As A = A(A) — 0 the forms w become
concentrated around the center point of A. One expects a similar localization
of the harmonic forms to occur on a general manifold (which has no conformal
vector fields). Thus given a connection A with center p € M and scale size
A < 1, we use normal coordinates at p to define vector fields (obtained from
the four coordinate vector fields and the radial vector field r8/8r on R*) which
are nearly conformal in a neighborhood of p. The approximately harmonic
forms w4 are then defined by contracting F4 with these vector fields. These
forms have support near p, and hence the estimates on their L2 norms (done
in §3) are essentially: local calculations.

84 is devoted to the calculation of the differential of the coordinate chart
w1, we write it as an explicit bundle map T'((0, Ag) X M) — T.# plus an
error term, and keep track of the A-dependence of the error term. These
calculations parallel those of Donaldson [6, §III}, but our purposes require
considerably more detail (¥ ! has an expansion in powers of A which we must
compute to an additional order in A). The improvements require combining
the gauge theory with a certain amount of Riemannian geometry on M.

The results of §§3 and 4 are tied together in §5, where we construct an
approximate inverse to ¥. and again estimate how good our approximation
is. This enables us to conclude that the L? metric £ on the collar is asymptotic
to a product metric. Specifically, we prove:

Theorem II. Let £ denote the product metric 4n%(2dA2 @ g) on Rx M,
and let U be the collar map (0.4). Then g ~ ¥*£ as A — 0. More precisely,
given € > 0 there exists A\g > 0 such that for any [A] € # with A\(A) < Ao
and any W € Tig 4 ,

(0.5) (1— )T £ (W, W) < (W, W) < (1+ )T £ (W, W).

Theorem II allows us to attach a geometric boundary to .#. To do this,
we let .Z be the completion of (#, #) as a metric space. In §5 we prove
that the metric on .# extends to a C° metric on .#. Equation (0.5) then
implies that the scale size A is (asymptotically) proportional to the distance
to 8.4 . In particular, the distance to the boundary is finite. This observation
immediately leads to several important conclusions about the metric space
structure of the moduli space (/#, z).
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Theorem III. (a) .#Z is compact, and hence has finite diameter and
volume.

(b) A is incomplete.

(c) The distance function p([A]) = dist([A], 0.#) is asymptotic to (872)1/2 )
as A — 0 (i.e., the ratio of these functions approaches 1, uniformly in [A]).

Part (c) above shows that p([{A]), which is a function depending on the
geometry of the moduli space, is essentially equivalent to the scale A, which
is a characteristic of the individual instantons on M. In particular, each
instanton has a natural scale size p([A])/v872 which is independent of the
arbitrary choices (of cut-off function, etc.) involved in the local definition of
A given in §4. ‘

Another implication of Theorem II is that the function A on the collar
extends smoothly to .#, and that the boundary 8.4 is precisely the set
{} = 0}. Thus, formally, d.# consists of “instantons of scale zero”. Such
instantons are completely characterized by their center point p € M. This
suggests that .4 and M might be equal as Riemannian manifolds. The next
theorem asserts that this is true, except for a factor of 472. It generalizes
Corollary C of [9], which dealt with the case M = §*.

Theorem IV. The metric completion #* of the moduli space (A*, 2) is
a compact singular manifold-unth-boundary. Its singularities are the (isolated)
cone points described in Theorem 1, and its boundary 0.4~ = 0.4 = {) = 0}
is a smooth submanifold of M isometric to (M, 4x?g).

If we truncate the cones of .# by removing the open neighborhoods U; of
the singular points we obtain a smooth, compact, Riemannian manifold-with-
boundary which is a cobordism from M to a disjoint union of CP?’s. From
this one can easily show that the intersection form of M is standard. This is
almost exactly Donaldson’s original proof of this fact {6]. However, the above
theorems give a much sharper picture of the moduli space; in particular, they
show that Donaldson’s topological compactification of the moduli space is
naturally implemented by the L? metric.

Finally, we briefly consider the moduli spaces of instantons on more general
4-manifolds and with instanton number k£ > 1. These moduli spaces are
stratified manifolds. The various strata consist formally of multi-instantons,
some of whose scales are zero. Thus they are similar to the boundary of
the collar in Figure 1, except that they usually have high codimension and
a rather complicated topological structure (as described in part in the work
of Taubes and Donaldson). Nevertheless, much of the analysis of the second
part of this paper should carry over to these general strata. One therefore
expects Theorem III to be valid for general moduli spaces.
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PART I. GEOMETRY OF THE CONES

1. The moduli space of the based gauge group

Reducible connections prevent the action of the gauge group & on ./ from
being locally free, and consequently the orbit space & and the moduli space
M C F are usually not manifolds. In the next section we will examine the
geometry of .# in neighborhoods of the singular points—the cones of Figure
1. This section provides the analytical foundation on which that discussion
is based. This analysis is of independent interest. It requires no assumptions
on M, P, and G, save that the 4-manifold M be compact and oriented, and
that the Lie group G be compact and semisimple.

From a topological perspective the singularities of & are best understood
by fixing a basepoint 2o € M and considering the normal subgroup ¥° c &
consisting of those automorphisms of P which restrict to the identity on Py,
the fiber over xg. This “based” gauge group acts freely on ., s0 Y — F =
& [Z° is a principal £%-bundle. On the other hand, the full gauge group &
acts on %7 and the stabilizer at each irreducible connection is the center of &.
This center is the group .2 = I'(P X aq Z), where Z is the center of G (Z = Z
is finite since G is semisimple). Thus the action of Z on & induces an action
of Z/(Z x %) = G/Z on & which is free on the open dense subset %* of
irreducible connections, and whose orbit space is & = & /& . Restricting to
the self-dual connections S C &, we get a moduli space M C B with a
G /Z-action whose orbit space is the usual moduli space # = & /¥ C Z.

A — B
(L.1) l l
M — F

The singularities of .# and &% can then be described by studying this G/Z-
action.

From an analytical perspective the situation is more complicated. There are
standard “slice theorems” which show that .#™* and &* are Hilbert manifolds
(cf. [2, §6] or [8, §3]), and it is frequently asserted that the same arguments
show that .# and & are manifolds. A closer examination reveals that the
usual method for obtaining a slice of the &-action—which makes use of the
L? inner product on T.% —will not work for &0, essentially because Z9 is not
a closed subgroup in the L? topology. However, Z° s closed after completing
in an appropriate Sobolev topology, and if we use this Sobolev metric to define
slices, we do get a slice theorem. This yields smooth structures on A and
%, and the vertical arrows in (1.1) become Riemannian submersions with



506 DAVID GROISSER & THOMAS H. PARKER

respect to the Sobolev Riemannian metrics on M and B Furthermore, with
our specific choice of Sobolev norm, the Sobolev metric and the L? metric on
M are equal. This key fact will enable us, in §2, to use the Sobolev metric
on .# to obtain information about the L? geometry of .# near the singular
points. In the remainder of this section we will carry out the construction just
described, giving the details of the Hilbert space structure and the Sobolev
metrics on the spaces in (1.1).

We begin by recalling the fundamental elliptic sequence (0.1) (which is a
complex if and only if A is self-dual). The Laplacians 0% = d%d4 + Id and
04 = dad’y + 2(d;)*d; + 1Id are invertible for each Ap € &. Fix a smooth
connection Ag and write £ =T*M ® Ad P. For each 1nteger s > 0 we define
the Sobolev s-norm on I'(E') by

(12) <¢7 77>s;Ao = <¢, (5}10)577)112-

Remark. This definition extends to all real s as follows. By the generalized
Hodge theorem [1] there is a complete orthonormal basis {¢;} of L?(E) where
each ¢, satisfies quo ¢r = MA@ for some real positive eigenvalue A;. Hence
we can expand any ¢ € I'(E) as 3 axdx and define

(1.3) 612,40 = D Aiak.

This agrees with (1.2) for integral s > 0 (note that for any s € R we can
choose k € N with s < k and then ||¢[|2 < ||¢||Z = (¢,0%9) is finite, so the
sum in (1.3) converges).

Let L2(E) denote the completion of T'(E) in the Sobolev s-norm. By
identifying & = T4,% = ['(E), we obtain a complete space of connections
&,. One can similarly complete the gauge group to a group %4, (see [9, §1]
for details). The results of Uhlenbeck [16, §1] imply that, for s > 1, 544
is a smooth Lie group acting smoothly on .2, and that the topologies on
these spaces are independent of the choice of the connection Ay used to define
them. Furthermore, each g € 4, is continuous (as a section of P x5q9 G)
and &%, ={ge ?s+1|g(zo =1d} is a closed Lie subgroup of Z,11. The Lie
algebra of £0, , is g0, ; = {X € L%, ,(Ad P)|X(zo) = 0}. (We define the L2,
metric on I'(Ad P) analogously to (1.2), with (O0%)°*! replacing (O})%.)

We can eliminate the special role of the connection Ap by introducing the
natural L? Riemannian metric on .%%. It is defined at A € .% by replacing
Ap in (1.2) or (1.3) by A. The Sobolev inequalities imply that for s > 1 the
norms || - ||s;4 on T'(E) are all locally uniformly equivalent and that || - ||s is a
smooth Riemannian metric on .

The space %, thus carries both a strong L? metric and a weak L? metric.
Each defines a slice for the action of %;;. Since the infinitesimal action of
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Yet1 at A€ is the map da: L2, (Ad P) — L%(E), the L? slice is defined
as the L2-orthogonal complement of Im(d4). Thus this slice is

(1.4) Hy ={n€ L3(E)|dyn = 0}.
Similarly, the L2 slice H is defined by _
(1.5) 0=(daX,n)s = (X,d%(O%)°n)r> VYX.

For general A this does not lead to an expression as simple as (1.4). How-
ever, when F; = 0 we have d%04 = 0%d%, so that (1.5) is equivalent to
(X, (O%)°d%n) = 0; i.e. HS = ker((0%)° od?,). Because 009, is invertible, this
simplifies to

Hj = ker(d}).

Thus the slices Hq and HY coincide (independently of s) when A is self-dual.

It is trickier to describe the corresponding slices. for the action of the based
gauge group Z°. First consider the L? slice HY for the action of &5 s on
;. As above, 5 € I;Tf; if and only if # satisfies (1.5) for all X € g2.,.
Thus, for such 7, there is some v in the fiber (Ad P),, for which # solves the
distributional equation

(1.6) &4 (T%)°n = b,

where the delta function 6, is defined by (6,,Y) = (v,Y (zo)) (here (, ) is
the inner product on (Ad P)g,). To obtain a more useful and direct form of
(1.8) we separately consider the cases where A is reducible and irreducible.

First suppose that A is irreducible, so the Laplacian A% = d%da on
T(Ad P) is invertible. Let G(z,y) denote the Green function of AS; for
distinct z,y this is a linear map from (Ad P),; to (Ad P),. Fixing z = =,
each v € (Ad P),, thus determines a section G%(y) of Ad P which is smooth
for y # o, is singular at y = 2o, and satisfies d%d4GY = 6,. Hence (1.6) can
be written as d% ((O4)°n — d4aGY) = 0.

When A is reducible AY is not invertible. In this case we can solve (1.6)

only for certain v € (Ad P),,. Indeed, if v satisfies (1.6) and & € ker(AY) =

ker(da), then (v, ®(z0)) = ((O4)°n,da®) = 0, so v lies in the orthogonal
complement to the subspace K., = span{®(zo)|® € ker(da)} C (AdP)g,.
Conversely, when v L K,  we can solve (1.6) by modifying the argument in
the preceding paragraph, as follows. Even when A is reducible A9 is invertible
on the L2-orthogonal complement of its kernel, and this inverse is given by
convolution with the Green function defined by

(1.7) = > A H(¢i(2), )0i(w),

A;>0
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where {¢; € T(AdP)} is an L2-orthonormal basis of eigenfunctions with
eigenvalues {A;}. Fixing z = zy, we obtain sections G% (y) of Ad P as above;
these are again singular at y = zo and smooth elsewhere. They satisfy
A%GY = 6, — Y_(®;(z0),v)®;, where {®;} is an L%-orthonormal basis of
ker(da). (The construction of such Green functions is standard; one obtains
them by an integral transform of the heat kernel (as in {13, §2]), or by directly
proving the convergence of (1.7) {3].) In particular, when v L K., we again
have AYGY, = 6,. Thus for all connections A, the equation (1.6) defining the
slice H, is equivalent to

(1.8) 45 ((O%)*n ~ daG%) =0

for some v L K,,, where K, = {0} if A is irreducible and where G4 is
defined by (1.7). Henceforth whenever we write G% we assume v 1 K.

Now suppose that A is self-dual. Then 0%d% = d%0%, so multiplying
(1.8) by (O%)~* gives

(1.9) di(n - da(0%)7°GY) =0.
Hence when A s self-dual,
(110)  Hj =span{Ha,da(003)°C4} = Ha ® span{da(0%) ~°G4}

and this splitting is L2-orthogonal. Thus for self-dual A the L2-horizontal
slice for & — % is spanned by the A%-harmonic forms (which are smooth)
and the sections d4(09)°GY.

Remarks. (1) One can check that d4(009%)7°GY € L2 for p < 25 -1 so,
since s > 1, this space lies in the tangent space to .%%;, on which the L? metric
is well defined. This is where we would run into trouble were we only to use
the L? metric throughout. Formally, we would find H4 = span{H4,d AaGY},
but d4GY ¢ L? so the L? metric on H 4 would not be defined.

(2) If we let A vary through self-dual connections, then, as we pass through
a reducible connection 4¢ some of the sections G% vary discontinuously; fur-
thermore, dim(H 4 Nkerd}) jumps up by dim(ker(d,)) and

dim(span{d4(0%)~°G%})

jumps down. Nevertheless, one can show that %7 = HS Nker(dy) varies
smoothly.

(3) When A is irreducible, W3t! = span{(0%)~*GY} is the L2, ;-orthogo-
nal complement of g2, ; in go41. For if ¢ € g0, ; we have

((b, (D%)—SG%)S+1 = (¢7 D%G%)LQ = <¢: 5‘”) =0,
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so W5t! is orthogonal to gJ,,, and since codim(gd,,) = dim(Ad P)g, =
dim(W45t!), Wit is a complement. When A is reducible W§ ! is still orthog-
onal te g2, ;, but is too small to be a complement. In this case W5 ©ker(d4)
is a (nonorthogonal) complement.

Theorem 1.1. For each s > 1, B = /G2 is a smooth Hausdorff
manifold and &, — g;’s is a smooth fibration of Hilbert manifolds. There is
a natural (strong) L? metric on B which makes this fibration a Riemannian
submersion.

Proof. We begin by showing that (1.8) defines a slice for the action of
&9, ,. Fix A € &, and consider the affine subspace Sx4 = A+ H§ C &. The
group action gives a map

®: 82, x S4 — L,

which is smooth for s > 1 [16, Lemma 1.2]. Identifying T4 S4 with H % the
differential of ® at (Id, A) is

D®: ¢, x HY — Tasts,
(X,n)—daX+n.

Suppose that d4X +7n = 0. Then (ds4X,dsX}s = —{daX,n)s =0, implying
daX = 0. In particular |X| = const = 0 since X(zo) = 0. Hence X = 0,
n = 0, and D® is injective.

To show that it is surjective, note that for every A € &%, s > 1, there
is a Poincaré inequality for g0, ,: there is a constant ¢ such that || X||z2 <
¢lldaX||L2 for every X € g0, (the proof is similar to that of [11, Theorem
3.6.5], using the facts that the embedding L§+1 — (0 is compact and that
d4X = 0implies X = 0 as above). This immediately extends to the inequality
IXlz2,, < ¢lldaXlzz, which implies that dagl,, C L2(E) is closed. Hence
L%(E) is the orthogonal direct sum dag2,, ® HY, so every element of Ta; =
L2(E) lies in the image of D®. Therefore D® is an isomorphism, so by -
the inverse function theorem ¥ is a local diffeomorphism of neighborhoods
ﬁl X ﬁz b ﬁs.

The argument for &, injects into the quotient (i.e., that g-@2N& = O for
every g # 1 in .?SQH) and that the quotient is Hausdorff proceeds exactly as
in the slice theorem for & — & (see [2, §6], [8, §3], {10, §11.10], or [12, §4]).

Finally, given [4] € B, use the isomorphism T} A].Q';s ~H % (for any rep-
resentative A of [A]) to pull back the L2 metric from HS to Tiy B,. Our L2
metric on .9';3 is gauge-invariant, so the result is independent of the choice.
of A and is well defined. By construction, %% — %, is then a Riemannian
submersion. q.e.d.
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As noted in the proof above, the L? metric on & is gauge-invariant, so
the residual action of ¥/%, = G/Z on & is isometric. This action is free on
FB* C & . Thus we have a commutative diagram of Riemannian submersions,

= AN
(1.11) o B
—
By

where all spaces have their L? metrics; moreover 7} is a principal G/Z-bundle.

We can now restrict this diagram to the self-dual connections. Let &/ =
{A € & |ker(dy)* = {0}}. An application of the implicit function theorem
shows that ! = 99, N &, is a smooth Hilbert ma.nifold for s > 1 (cf. {8,
§3]). Writing A = 52!/%., and M, = FD./Z%, |, we have a commuta-

tive diagram

!
(1.12) . M!

%I
where 7 is a Riemannian submersion, and 7, 7; are submersions over the
subspace #'* = #' NFB*.

Since Ta(52') = ker(d), we obtain slices for = and mo by intersecting
H¢ and HE with ker(d;). Denoting thése restricted slices by #; and )”Zf,
we thus have identifications
Tya )" = 22 % H nker(dy),

Tia k' =27 < HY Nker(dy).
These will be used frequently in later sections.

We now state the main theorem of this section. It describes the natural
Riemannian metrics on the moduli space Va

Theorem 1.2. (a) The dzﬁerentzable structure on %’ is independent of
s > 1. This based moduli space M ./%’ " is thus a well-defined smooth
ﬁmte dimenstonal manifold.

(b) M carries an analytic family of smooth metrics {zs]s > 1} induced
by the L2 norms. The action of G/Z on M is isometric with respect to each
Fs

(c) For each s > 1 there is a commutative diagram (1.12) where /Z;' =
M'. The map mo 1S a Riemannian submersion with respect to the L2-induced

(1.13)
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metiics and, over #'*, w is a Riemannian submersion with respect to both the
L%- and L2-induced metrics. For each s > 1, m; is a Riemannian submersion
from (/%N’*,;s) to (A", 2).

Proof. (a) For any 1 < s < &' the inclusions &% — % and &2, — G,
induce a smooth inclusion g}s, — (ggs which restricts to a map ¢: Ns’, — /%;’ .
Since every self-dual connection is gauge-equivalent to a smooth one, ¢ is
a bijection and, given [A] € /%;’,, we can choose a smooth connection A
representing both [A] and ¢([A]). The slice theorem obtained in the proof of
Theorem 1.1, together with the regular value theorem (applied to the function
A — F} ), gives us smooth maps ®,,®, from neighborhoods U’ of [4] in
D!, (vespectively, U of 1([A]) in FB!) to #§ (respectively #7). These
define smooth local charts for ;’, and /Z,’ around [A] and ¢([A]). To prove
that the smooth structures on £, and .#, are equivalent, it suffices to show
that the overlap function /‘%;f' — /‘%As is locally a diffeomorphism. To do this,
let ¥, denote the restriction of @4 to the slice A + %2{'. Then ¥, (n) =
A+n,s0 \II;,l is an affine map from the finite-dimensional vector space /’%A‘"
to &, C &/ . It is therefore bounded, and hence smooth, as a map from
%2{” to /‘%As . Since ®,: &, — /‘?A*" is smooth it follows that the composition
P00, " Zf' — /‘%;f (i.e. the overlap map) is smooth. Since /‘%;f' intersects
the vertical space d4g 1 trivially, the differential of this map at the origin is
invertible. We conclude that the overlap map is locally a diffeomorphism.

(b) The L2 metric on .4/ (or.#.*) is simply the restriction of the L2 metric
on . to /‘%;f (or ). The action of F;11 on & is L2-isometric, so preserves
the distribution /¢ and induces a #s-isometric action of %51,/8%, =G/Z
on .Z.

Observe that by (1.10) and the paragraph following (1.5) we have H§ =
Hy (so #¢ = #,4 is independent of s), and I~{j = Hy ®V}, where V° =
span{d (%) ~°G%} and this splitting is L2-orthogonal. Since Fy =0, V3 C
ker(d), so intersecting with ker(d}) gives an L2-orthogonal splitting /‘%As =
ZoV] = #3®V]. Furthermore, by the definition of 0% and the L2 metric,
(mn)s = {myn)12 for n € 7 = #4. Thus g,|», is independent of s. This
means that the s-dependence of &, is completely determined by the restriction
to the fibers of . #' — A’ (in particular, m;: (//’*,;s) — (#',z)is a
Riemannian submersion for any s > 1). These fibers are the orbits of G/Z,
along which g, is invariant. We claim that if we allow s to assume complex
values, Re(s) > 1, then { #,} is an analytic family, i.e. z, € Symz(T[’;q/’)®C
depends analytically on s for each [A] € H'. To verify this, recall that
at each irreducible {A] € M, the #s-vertical tangent space is spanned by
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{da(0%)~°G%|v € (Ad P),,}. This is also true for reducible [A] provided we
restrict 3% and G 4 to the orthogonal complement of ker (0%, as in (1.7). In
either case we have that, for v,w € (Ad P),,,

(da(0%)7°G%,da(0%)°G%) 12 = (@) 7°G, d4(D})°da(0%) ~°CG)
=(@)~° dAdAGA)
= ((O%) 7G4, bw) = (O2) ~°CG4(20), w)

depends analytically on s (cf. [14, §8]).

(c) We have already shown that mg and 7 are Riemannian submersions of
the L? metrics. The map = is an L2-Riemannian submersion by the definition
of the metric on .#, and we have just verified the statement about .

2. Geometry near the reducible connections

In this section we will describe the L? metric on the moduli space in a
neighborhood of a reducible connection. Our approach is to use the fibration
M — A of Theorem 1.2 to reduce the problem to a calculation in finite-
dimensional Riemannian geometry.

We will work on a principal G = SU(2) bundle over a 4-manifold M satis-
fying b1 (M) = b; (M) = 0, but will allow any instanton number k£ > 1. Fix
a Sobolev norm ¢ > 1. By a theorem of Uhlenbeck [8, §3] we have, after per-
turbing the metric on M if necessary, that #'* =.#* (i.e. that kerd,, = {0}
for all self-dual A). The moduli spaces .# and .#* are then smooth, and
M —M* consists of the gauge-equivalence classes of reducible self-dual connec-
tions whose holonomy reduces the bundle P to an S!-bundle. The set of such
reducible connections is in 1-1 correspondence with {u € H2(M;Z)luUu = 1},
and hence consists of a finite number of points in .#Z (cf. [10, §4.3]). Our goal
is to describe the geometry of .# near these points.

The reducible connections can also be characterized in terms of the isomet-
ric action of Z/(% x Z) = SO(3) on # described in the previous section.
The stabilizer at an irreducible point is trivial, so M M s a pr1nc1pa1
SO(3)-bundle and dim.# = dim.# + 3 = 8k. At a reducible point [Ao] € M
the stabilizer is a circle ST € SO(3) which can be described as follows. Since
Ap is reducible there is a section ® = ®4° of Ad P satisfying V49® = 0. This
® has constant length (d|®|2 = 2(®, VP) = 0) which we normalize to be 1.
For convenience we use, in this section only, the metric on Ad P induced by
—1 the Killing form of su(2), so the identity [, [v,w]] = (u, w)v — (u,v)w
holds. For each unit vector u € su(2) we then have exp(2ru) = —1, and
exp(tu) = 1 < ¢t is a multiple of 27. (Although our metric here is twice that
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used in §§3-5 (where, as is customary, our metric is minus the trace form of
the standard representation on C2), all the results of the present section—in
particular Theorem 2.8 and Corollary 2.9—are completely independent of the
choice of normalization.) For any t € R, exp(t®) is a gauge transformation fix-
ing Ap and exp(t®) € Z" < t is a multiple of 2x. Hence exp(t®), 0 <t < 2,
projects to a circle in Z/(% x Z) = SO(3) which acts isometrically on .#
fixing the point p = [Ap]. We now make four observations.

(i) Since g: = exp(t®) € & takes V to gsoVog; ' = V —tV® + O(t?),
the circle action generated by ® on &7 is given infinitesimally by the Killing
vector field

(2.1) £(4) = V4o,

The corresponding circle action on the quotient A has an infinitesimal gen-
erator the Killing field

£(14)) = m.€(A4).
(ii) The differential of this S! action at p = [Ap)] is the isotropy represen-

tation of S on T,,/ . To compute it, first note that the differential of the S*
action on & ° at Ag is given by

B %gt(VAo + SB)gt_1|s=0 =(Adg;)B for B€ Ty, °.

This differential preserves the vertical subspace {d4,X|X € L2 ;(Ad P) sat-
isfies X (z¢) = 0} since (Ad g:)d4X = da((Ad g;)X) with ((Ad g¢)X)(z0) = 0.
It must therefore preserve the L2 orthogonal complement (since S* acts iso-
metrically). Thus if we identify T,.# with #; as in (1.13), then the isotropy
representation is

(2.2) Adg,: Z — /%4.

(iii) Writing Ad g; = exp(¢J), where J = ad ®, we see that the infinitesimal
generator of the isotropy representation is

(2.3) J=1[®,]: % — #.

(iv) The infinitesimal isotropy representation can also be described in terms
of the local Riemannian geometry of .# by linearizing the Killing vector field
€ at p as follows. Let {¥,} be the flow of £, choose B € T,.#', and extend B
arbitrarily to a neighborhood of p. Then since £(p) = 0,

d
(2.4) d_t»[(\I’s)*B]p = (¥s)s(—LeB)lp = (¥s)«(VBE — VeB)lp

= (WS)!p(JB)’
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when J is defined by J(B) = (V“g €)(p) (here V# is the Levi-Civita connec-
tion on ). It then follows from the uniqueness theorem for ordinary dif-
ferential equations that (¥,)., = exp(sJ). Thus (2.3) is alternatively given
by

(2.5) J = V4 ¢ € End(T,#).

(Indeed, one can check directly that (2.3) follows from (2.1) and (2.5).) Note
that since the isotropy representation is orthogonal, J is skew-symmetric.

These observations reduce the original gauge theory problem to the follow-
ing problem in pure Riemannian geometry. We are given an 8k-dimensional
Riemannian manifold W (# in our application) on which SO(3) acts isomet-
rically.  We assume that the action is free except along a finite number of
exceptional orbits {&; C W} at each point of which the isotropy subgroup is
S! (so each & is diffeomorphic to SO(3)/S; = Sz). Let 7: W — W denote
the projection onto the orbit space and let z; = 7(¢;). Then there is a Rie-
mannian metric on W* = W — {z;} such that =: W* =W —{&;} > W*is
a Riemannian submersion. We seek a description of the geometry of W near
each z,.

This geometry problem is solved by Theorem 2.8 below. Our answer will
make use of the following geometric quantities. The infinitesimal SO(3)-action
is a linear map L which associates to each v € SO(3) a Killing vector field L{v)
on W; we will often write &, for L(v). The pointwise adjoint of L is an so (3)-
valued 1-form L* on W. For each z € W, the operator L*L € End(so (3)) is
selfadjoint and nonnegative; it is strictly positive off | J&; and has a (simple)
zero eigenvalue at each point = € ¢&;. (In our gauge theory problem L is the
restriction of d4 to the Lie algebra g = so(3) = {(09)7°GY}, and L*L is
the restriction to g of the Laplacian d%d4 of the fundamental elliptic complex
(0.1).) The fact that the smallest eigenvalue of L*L approaches zero as z
approaches ¢&; will be central to the discussion below.

Fix a point p € W on an exceptional orbit @ = 7~ 1(z). Let vp € 50(3)
be a unit-length generator of its isotropy subgroup S} < SO(3). Then the
infinitesimal action of S) is the Killing vector field £ = L(vp) and, as above,
the isotropy representation is generated by J = V¢&. - The local topology
around @ is described by the following well-known theorem.

Differentiable Slice Theorem. Let G be a compact Lie group acting
1sometrically on a finite-dimensional Riemannian manifold W. Let Gp be the
isotropy subgroup of a point p € W with orbit @, (so Gy acts on the normal
bundle Ny by the isotropy representation). Then the ezponential map is an
equivariant diffeomorphism from Np@ to a neighborhood of &, in w.
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This theorem is a simple consequence of the uniqueness theorem for solu-
tions to ordinary differential equations.

To apply this we must first identify the isotropy representation of our SO(3)
action.

Lemma 2.1. J2 = —Id. Hence imW is even and T,W = T,0 &N, & =
C o C*~! as S]-representations. ,

Proof. Since J is skew-symmetric we can choose a basis {¢;} of T,W so
that J is given by a matrix of the form
( 0 ax \

—ay

0

a; > 0.
—ap O ) 1

\ 0/

The isotropy subgroup S, acts linearly on T,,W by exp(tJ); it follows that the
a; are integers and that the stabilizer of ey, is Z/a;Z C S* for | < k, and
the stabilizer of ¢, { > 2k, is SZ}. Applying the Differentiable Slice Theorem
with G = S}, we see that for small € > 0 the point z = exp,(ee;) € W has
the same stabilizer as does ¢;. These points z near p are of two types.

(i) If 2 ¢ &, then by hypothesis the action of SO(3)—and hence that of
8}—is free so the stabilizer of z is 1 € S*.

(ii) If 2 € &, then 2z = g - p for some g € SO(3) (not unique). Hence the
stabilizer of z in SO(3) is ¢S, '¢g™" and its stabilizer in S} is S;NgS g™ ! = 1.

~Thus the stabilizer of 2 # p is always trivial. We conclude that J has
no kernel and that each a; is 1, so J2 = —Id. The lemma follows since
T,@ = {Ly(v)|v € 50(3)} is an S}-invariant subspace of T,W, and hence so
is N@.

Remark. In our gauge theory application, Lemma 2.1 can also be proved
by entirely analytic methods. This is done in the appendix. '

We now describe the local structure of the fibration W — W near &. For
this, we use polar coordinates to identify the normal space Np@ — {p} with
(0,00) x £,, where £, = §8 =3 is the unit sphere. The Differentiable Slice
Theorem then implies that the exponential map

F, =exp,: (0,6) X X, — i

2.6 -
(26) = {exp, X|X EN,Z, 0< |X|<e} CW*
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is an Sj-equivariant diffeomorphism for ¢ sufficiently small. Since Np@ =
C%~1 by Lemma 2.1, the quotient of £, by S} is diffeomorphic to P =
CP*-2_ and F induces a diffeomorphism

(2.7) Fp: (0,6) x P — U* CW*,

where U* = 7U/* is open in W. (Fp gives the analog of a polar normal
coordinate system on W*.) Hence U = U* U {zg} is a neighborhood of zg =
m(p) homeomorphic to a cone on P (diffeomorphic off the vertex).

Specializing to the case W = %’ we have arrived at the fact, first observed
by Donaldson, that each irreducible connection [Ao} € .# has a neighborhood
in .# diffeomorphic to a cone on CP%~2,

The next step is to write the metric g on W in the coordinate system (2.7),
expressing it in terms of the metric § on W and the operator L. This is
a very natural geometric problem—essentially a Gauss lemma on the orbit
space-——which does not seem to be in the literature.

The calculations are best done by introducing appropriate Jacobi fields. We
will first describe a geodesic ¥ in W and its projection v in W. Then, given
a vector Y tangent to W at a point in ~, we will lift it to the corresponding
point of 7, extend it to a Jacobi field K along ¥, and examine the projected
vector field K = 1. K along ~. In doing this we will let 7 denote both the
projection W — W and the corresponding projection (0, e) X Tp — — (0,e) xP
obtained from (2.6) and (2.7). We will also simply write ¥ for F,, and F for
F,.

Given (r,7) € (0,€) x P choose a vector ¥ € ¥, C Np@ with 77 = 7
and consider the geodesic j(t) = exp,(t7) in W. Its tangent vector field,
which we denote by f‘(t), satisfies T(0) = 7. Observe that 7 is everywhere
perpendicular to the Killing vector fields £ = L(v), v € s0(3). (Thisis a
more stringent condition for ¢ # 0 than for t = 0, since for ¢ # 0 the &’s
span a 3-dimensional space, while at ¢ = 0 their span is only 2-dimensional.)
This follows since (a) ép(f‘, £) = 0 because T = 7 € Np@ at p, and (b)
a%g(f‘, £) = §(T, V7€) = 0 using the geodesic equation V,f.f‘ = 0 and Killing’s
equation §(X,Vy¢) = —§(Y,Vx&). Thus 4 is horizontal with respect to the
Riemannian submersion W* — W*, so projects to an arclength-parametrized
geodesic ¥ = 74 in W. (The curve « is independent of the choice of 7.) In
particular, F,;% = 7.7 has unit length in TW.

Now given Y € TP, the horizontal lift Y of 7 is the unique vector in
N, = N,@ satisfying

(i) mY =Y,
(ii) ¥ € T;%,, and
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(iii) Y is orthogonal to the infinitesimal action of S} at 7.
(In (ii) and (iii) we are identifying T5N, with N,.) Since the tangent space
to the Sz}-orbit through 7 € Ny is precisely R - J7 C N, = T3 Np, conditions
(i) and (iii) are equivalent to (V,7) = (¥, J7) = 0.

Lemma 2.2. With the above notation, the differential of F at (r,7) €
(0,€) x P s given by

(2.8) Furry(a,Y) = m(aT + (expy)uri (rY)).

Proof. Let a(t) be a curve in P with @(0) = 7 and &'(0) = Y. It has
a unique lift to a horizontal curve &(t) in X, with 7& = a and &(0) = 7.
Differentiating the equation F(r,a(t)) = 7 o exp,(ré(t)) at ¢t = 0 we obtain

Fipy(0,Y) =T, 0 expp‘(r;)(rf’).

Similarly, one checks that F,(.,)(1,0) = 7.(exp,)(,#) (7); we write this as
simply m.T. Taking a linear combination of these two formulas then yields
(2.8). q.ed.

To evaluate the last term in (2.8), we consider the family of geodesics

A(s,t) = F(t, 7+ sY) = exp,, (¢(F + sY)),
which are variations of the geodesic 4(¢) defined above. Then Ky (t) =

’7*;%|s=0 is the Jacobi field along 4 with initial conditions Ky (0) = 0 and
(V#Ky)(0) =Y. It therefore satisfies the Jacobi equation

(2.9) Vv:V:Ky = R(T,Ky)T,
where R is the Riemannian curvature of W (cf. [4, §1.4]). Its value at t = r is
(2.10) Ey(r) = (exp,)a () (1Y)
Proposition 2.3. The metric g of W satisfies
(2.11) Frg=drl@y,

where g, 13 the metric on P given at (r,7) € (0,¢) x P by
(212)  g(YV,Y) = [§(Ky, Ky) = §(L* Ky, (L*"L) " LByl 5y, -

Proof. Since 7 is a Riemannian submersion, (2.8) and (2.10) imply

9 . ~
(213) (F,2) (ag; +Y, ag- + Y) = §j(hor(a¥ + Ky ), hor(a? + Ky)),
where hor denotes the component perpendicular to the SO(3)-orbits in w.
We have already observed that T is horizontal and of unit length. A basic
fact about Jacobi fields is that the conditions K(0) = 0 and (V;+K)(0) L T
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imply that K L T for all t; hence Ky L T. Since the vertical compo-
nent of Ky is automatlcally perpendicular to the horizontal vector T it
follows that hor(Ky) L T. Thus the right-hand side of (2.13) is simply
a2 + j(hor(Ky),hor(Ky)). Finally, since the tangent space to the SO(3)-
orbit at 4(t) is image(L) C T:,(t)W, the horizontal projection (for ¢ # 0) is
hor =1 — L(L*L)~'L*. The proposition follows.

Now consider the term f(t) = §(Ky (t), Ky (t)) = |K()|? in (2.12). Its
Taylor series near t = 0 is easily calculated by successively differentiating,
using (2.9), and evaluating at ¢ = 0 (see [4, §1.4] for details). We obtain
J(0) = f(0) =0, f"(0) = 2{¥|2, f(0) = 0, f(0) = 8(Y, R(T,Y)T), and
hence

(2.14) IK(@)|? = 2|V — LM (R(T, Y)Y, T) + OV |?).

Unfortunately this procedure cannot be directly applied to the second term in
(2.12) because it involves evaluating at ¢ = 0, where (L*L)~! is not defined.
Therefore we next examine L*K as t — 0.

Definition 2.4. At p€ @ c W, L}L, € End(so(3)) has a 1-dimensional
kernel. Fix vp € ker LyL, with |v,| = 1. For q € W near p let Ao(q) <
A1(g) £ A2(g) be the eigenvalues of L3 L, and let v(q) € s0(3) be the unique
Ag-eigenvector with |v(g)] = 1 and v(p) = vp. (Note that the functions Ag(q)
and v(q) are smooth.)

Lemma 2.5. Let v = v(5(t)), A:(t) = Xi(3(t)), and Ly = Ly). Then

(8) M1(0) = Xg(0),

(b) v: = v, + O(t?) ast — 0,

(¢) Xo(t) =2+ O(t%) as t — 0.

Proof. (a) It is straightforward to check that L;L, commutes with the
adjoint action of the isotropy subgroup S, of s0(3). But S, acts irreducibly on
the orthogonal complement of {span(v,)} in s6(3), so Schur’s lemma implies
that LyL, is a multiple of the identity on this subspace.

(b) For each w € s0(3) consider the function ¢(t) = (w,LiLsv;) =
Ao(t)(w,v). Since Ao(t) is a smooth nonnegative function vanishing at 0
we have Ag(0) = A(0) = 0 and hence $(0) = Ao(w,v) + Ao(w,v)|t=0 = 0,
where a dot denotes d/d¢. On the other hand, ¢(t) = (Lyw, Lyv;) = (€w, &, ),
so

$(0) = (Vibur v,) + (€ws Vo) + (b, &)le=0-
But &,(0) = 0 and V;£,(0) = J(T) by (2.5). Hence at t =0 -

0= (&w, J(T)) + (w’L*L{))'
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However, at t = 0, §w € Tp@, T € Np@ and J preserves Np@ (cf. Lemma
2.1). Thus 0 = (w,L*Lv) Yw, so © € kerL = spanv,. By differentiating
[v¢|2 = 1 we also see that (9,v,) =0, so 9(0) = 0 and (b) follows.

(c) Since |v:|2 = 1 we have Ao(t) = (vs, L} Lyvy) = | &, |* and hence

AO(t) = 2(§vuvf§vt + 613;)'

Differentiating again and evaluating at ¢t = 0 where §, = 0 and 9, = 0 yields
20(0) = 2|V5£ () = 2J(T)* = 2|T|* = 2

(using Lemma 2.1). Then (c) follows by Taylor’s theorem.
Lemma 2.6. Ast— 0

(2.15) (L*K, (L’ L) L*R)(3() = M (VL) (V)P + O(°),

where Ay s the nonzero eigenvalue of L*L att = 0.
Proof. We first fix w € so(3) and compute the Taylor series of the function

Ju(t) = (L*K(4()), w) = (K, &) (1(2)).
For this we differentiate f,, three~times a.rld evaluate at ¢t = 0, noting that

(a) K satisfies K(0) = 0, (V#K)(0) = Y and equation (2.9), so V2K (0) =
0 and V3K (0) = R(T,Y)T.

(b) A Killing vector field is a Jacobi field along every geodesic, so VZ.£, =
R(T, &,)T and V3£, = (Vo R)(T, €u)T + R(T,Vr&,)T. The result is
(2.16) fu(t) = 2(Y, V2éw) + F(R(T,Y)T, €u) + O(t%).

For each ¢, let {w;(t)}2_, be an orthonormal basis of so (3) with

(L7 L)yywi(t) = Ae(v(t))wi(t)
and wo(t) = v(7(t)) (see Definition 2.4). Then, writing A;(y(t)) = Ai(2),

(LK, (L L) 'L K) gy = > _ M) H(L K (1(1)), wi(£))?
(2.17) =0

= o(t) oo ®) + Z Xi(t) ™ a3 ®)-

According to Lemma 2.5(b) we have wp(t) = v, + O(t2) € s0(3), and hence
uwo(ty = &v, + oft?). Substituting this into (2.16) shows that fuq(t) =
fup (t) + O(t). But f, (t) is also O(t*) since (V,V6,,) = (¥,JY) = 0 and
€v,(p) = 0. Hence f2 ,)(t) = O(t?), and by Lemma 2.5(c) the first term of
(2.17) is therefore O(t°).
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Similarly, for ¢ = 1,2, (2.16) gives
fo0(®) = (¥, Vitu, )2t + O°)
= (?, Vf-fwl.(o))z + O(ts).
Furthermore, Lemma 2.5(a) shows that as t — 0, A1(#) and Az(¢) have the

same nonzero limit, which we call A;. Thus if we set v; = w;(0) the last term
in (2.17) is

: 2
(2.18) AT (Y, V56,)° + OF).
i=1
In fact, since (?,Vf&,o) = (?,JT) = 0, we can include ¢ = 0 in the sum
without changing the value.
Now observe that, in general,

(Vv L*)(W),v) = (Vy(L*W) — L*(VyW),v)
= V(Wa &) - (VvW, &) = (Wa Vv &).

Hence
2 2

(2.19) DY, V56,.)% =D (VL) (Y),v)? = [(V£L*)(V).
i=0 i=0 .
The lemma follows from (2.17), (2.18), and (2.19).

We can now write down an expansion for the metric on W near a singular
point. The leading term in this expansion involves the homogeneous metric
on P, which we normalize as follows.

Definition 2.7. Let gy be the metric induced on P = CPp*-2 by the
Riemannian submersion (Hopf fibration) ¥ — P, where % is the unit sphere
in C*~1, The sectional curvatures og of this metric are given in terms of the
complex structure J of P by

(2.20) 00(X,Y)=14+3(JX,Y)?
for orthogonal unit vectors X,Y € TP.

Theorem 2.8. Let F: (0,e) x P — U™ be the diffeomorphism (2.7) onto
a punctured neighborhood of a singular point xo € W. Let r be the distance in
W to zp and let go, 00 be as above.

(a) The metric g of W satisfies
(2.21) Frg=dr’ @r’(go +r’Q + O(r?),
where Q is the quadratic form on TP defined at 7 € P as the limiting value of
the curvature of W as we approach zo along the ray F(r,7):

(2.22) QX,Y) = —% lim ((F*R)(,,) (%,X) Y, %) .

r—0
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(b) The sectional curvatures o of W satisfy

oo(X,Y) -1
2

(2.23) (F*0)(X,Y) = +1(X,Y)+0(r),

where | 18 a function homogeneous of degree zero in X,Y and depending lin-
early on Q) and its second covariant derivatives.
Proof. From Proposition 2.3, equation (2.14), and Lemma 2.6 we have

(Fr9)(¥,Y) =PIV 2 + rQu(Y,Y) + O(r®),

where Q1(Y,Y) = —=3(R(T, Y)Y, T) - A7*|(VL*)(Y)[2. Since ¥ is horizon-
tal, |[Y|? = go(Y,Y). This identifies the metric g, of Proposition 2.3, so we
have

(2.24) F*g=dr? ®r%(go +r’Q1 + O(r?)).

It is a straightforward calculation to compute the curvature of a metric of the
form (2.24). One finds that

((F"R) (aér" Y) Y, %) = _3Q4(V,Y) + O(r).
Thus the limit in (2.22) exists, the bilinear forms @ and Q; are equal, and
(2.21) follows from (2.24).

To prove (2.23) we write the metric (2.21) as dr? @ g,, where g, is the
induced metric on the level-set P, = {y|dist(zo,y) = r}. By the Gauss
equation, o is related to the sectional curvature o, of g, by

F'o(X,Y)=0,(X,Y)—r 2+ [)(X,Y) + O(r),

where Iy is some linear function of Q. By simple rescaling, o, is =2 times
the sectional curvature of the metric r~2g,. If we then consider r—2g, =
go + 72Q + O(r3) as a l-parameter family of metrics on P, the standard
formulas for the variation of the curvature with respect to the metric give

o (X,Y) = r_z[ao(X,Y) + rzll(X,Y) +0(r%)],

where ! is a linear function of VVQ. Equation (2.23) follows from the last
two equations. q.e.d.

At the beginning of this section we cast our original gauge theory problem
in terms of the Riemannian geometry of W. Theorem 2.8 solves this geometry
problem. Returning to the gauge theory, we immediately obtain a proof of
Theorem 1 of the introduction.

Proof of Theorem 1. Given a reducible connection [A] € .#, simply apply
Theorem 2.8 with zo = [4], W= /ék and W = #, noting that oy is given
by {2.20). q.ed.
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Actually, Theorem 2.8 enables us to compute the O(r?) term in the expan-
sion (0.2} of the metric on .#. For this, we use the general formula, derived in
[9], which expresses the curvature of #* in terms of the Green operators G4 =
(d%da)~! and G%4 = (d;(d7)*)~! of the fundamental elliptic complex (0.1).
Specifically, Theorem 2.2 of [9] asserts that if X,Y € H4 = ker(d*) Nker(d™)
represent X,Y € Tj4).#* then the curvature of .#£™ at [A] is

(RIX,Y)Y.X) = 3(P5Y, G4 PEY) + (Pr X, GA(P;Y))
- (PZY,G4(PZY)).

(Here Px : Q¥(Ad P) — Q%+1(Ad P) is the linear map obtained by bracketing
with the Ad P factor and wedging with the (*(M) factor, P is its pointwise
adjoint, and Py = p_ o Px.)

Corollary 2.9. In the notation of Theorem 1, we have

F*y=dr’ @r*(go+7°Q+ O(r%),

where Q) is the gquadratic form on P defined as follows. Fizx a reducible con-
nection A in the gauge class [A] and identify P with /S, where ¥ is the
unit sphere in the harmonic subspace Hy = C**~1 of Q1(AdP). Let ® be
a nonzero section of AdP with da® = 0 and with J = [®,'] as in (2.2).
Now, given X € T,P, choose a harmonic form T € ¥ C Hy, representing
7, and a harmonic form Xe T#X C Hy which projects to X and satisfies
(X,[®,T])) =0. Then
Q-(X,X) = — (P}X,G4P;X) — L{(P;T,G4 P X)

+ 3(P= X, G4 P X),
where GG, G% are the Green operators for the reducible connection A.

Proof. Let ~(t) = [As] = [A + tT + O(t?)] be the radial geodesic in &
given by ~(t) = F(t,7). We will evaluate @,{X, X) by combining equations
(2.22) and (2.25).

Let 4(t) be the horizontal lift of y to .# with initial tangent vector repre-
sented by T € T4. Extend X to a horizontal vector field among 7, and write
X((t)) = X,, T(+(t)) = Ti. Inserting T, X;, and A, into (2.25), we first
consider the term
(2.27) (P}, X:,G9, P X.),
whose limit we must evaluate as ¢t — 0. Care must be taken because the
smallest eigenvalue ), of d) ,da, approaches zero as t — 0. Therefore we
let ®; be the eigensection of d),,d4, with eigenvalue ), normalized so that
[®¢llz2 = ||®]| L2, and write

(2.28) P; X, = (I); + (1),

(2.25)

(2.26)
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where (I); = ||<I>||"2(P;,1Xt,<1>t)<1>t is the L2-orthogonal projection of Pz X,
onto the eigenspace of the smallest eigenvalue. Since (2.28) is an orthogc;nal
eigenspace decomposition, the expression (2.27) is just the sum ((I);, G, (I):H+
(1), G9, (1D)).

Now ((1)¢,G%,(1):) = ||<I>||2,\t_2(P,‘;,‘X,,<I>,)2, and we claim that this term
is O(¢?). To establish this, consider f(t) = (P} X:,®) = (X,, [T}, 9]). By
the definition of X, this function vanishes at ¢t = 0, and its first derivative
there is (V7 X, [T, ®]) = —(V:X,JT). On the other hand, X is everywhere
horizontal, so ()~(t,§q>(1(t))) = 0. If we differentiate this equation twice,
use the fact that V;Vzés = R(T, €5)T (cf. the proof of Lemma 2.6), and
evaluate at ¢t = 0 (where £ = 0), we obtain (VzX,JT) = 0. Therefore
f(t) = O(t?). But, as in Lemma 2.5, we have &; = ®+0(t?), so (P%‘,f(,, ®,) =
) + O(t?) = O(t?). Since A; = O(¢t?) (as in Lemma 2.5) we conclude that
the contribution to (2.27) involving (I); is indeed O(¢?).

Therefore the limiting value of (2.27) is the limit of {(II);, G, (IT);). Now
(II); and the restriction of G4, to the orthogonal complement of ®; are both
continuous at ¢ = 0 (all eigenvalues but A; are bounded away from zero).
Hence we obtain the limit of (2.27) simply by substituting A for A, and
lim,_.o(II); for PTftXt. But limy_o(Il); = P£X, since (P£X,®) = 0. There-
fore the limit of (2.27), multiplied by —1/3 as in (2.22), is in the first term in
(2.26). ‘

Since G%, is uniformly bounded as t — 0 ((d)*d} is continuously invert-
ible for all [A] € .#, and # is locally compact), the remaining terms in (2.25)
approach the corresponding ones in (2.26). q.e.d.

We conclude this section by discussing several examples which help to un-
ravel the geometric meaning of the formula (2.21) for the metric. Let § be
the standard metric on the unit sphere S™.

Example 1. The metric dr2@®r2%(c?g) on (0, 1) x S™ (where ¢ is a constant)
defines a “linear” cone of one of three types.

(a) If ¢ = 1 we get simply the flat metric on the punctured unit ball in
R™*1, and the metric extends smoothly over the vertex.

(b) If 0 < ¢ < 1 we have a flat cone embedded in R"*! with vertex angle
aresin(c).

(c) If ¢ > 1 the cone cannot be isometrically embedded in Euclidean space,
and is therefore harder to visualize.

Example 2. Let (X,g)) be any compact Riemannian manifold not ho-
meomorphic to a sphere and consider the metric dr2 @ r2g; on the punctured
cone C* = (0,1)x X. In this case the cone is not homeomorphic to a manifold,
unlike the cones in Example 1. The geometry of the cone falls into two
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categories, distinguished by the asymptotic behavior of the curvature of C*
near the vertex.

(a) Unless all the sectional curvatures of g; equal 1, then, as in Theorem
2.8(b), one can show that the curvature of the cone blows up as one approaches
the vertex.

(b) If g; has constant curvature 1, then X is a quotient of a sphere, and it
is easy to see that the universal cover C* is R**1 — {0} with the flat metric.
Consequently, C* is a flat cone on a rational homology sphere.

Example 3. More general cone metrics have an expansion like that in
(2.21). The linearization—which is always one of the above types—determines
the nature of the singularity at the vertex to leading order. For example; on
a Riemannian manifold, a normal coordinate neighborhood of any point is a
cone on a sphere; the linearization is a cone of type 1(a) above.

Example 4. For a global example which realizes the hypotheses of our
SO(3)-action on W, take W = S2 x $2 x S2 x S2, the product of four
unit spheres, with SO(3) acting by rotation on each factor. The point p =
(u1, u2,us, us) has trivial stabilizer unless all the u;, considered as vectors in
R3, lie on a line. Thus the exceptional points are all of the form (ui,%u;,
tuy, +u, ), and the stabilizer of such a point is SO(2) acting in the plane or-
thogonal to u;. The quotient W therefore has eight singular points, each with
a neighborhood homeomorphic to a cone on CP2. Near such a singular point,
the metric behaves, to leading order, like Example 2(a). Had we used three
copies of S% instead of four, we would have obtained cones on CP!, behaving
as in Example 1(c) with ¢ = 2 (on CP! = §2 the metric go of Definition 2.7
equals 47).

The cones which occur in the moduli space are of the same character as
those in Example 4; in particular, their linearizations are of type 2(a).

PART II. GEOMETRY OF THE COLLAR
3. The approximate tangent space

We now turn our attention to the collar of the moduli space .# and study
the asymptotic behavior of the metric & there, with the primary goal of
proving Theorem II. Recall that each connection A has a scale A = A([4])
(the radius of the smallest ball containing half the “energy”), and that there
is a constant Ag > 0 such that each [A] € # with A < g is irreducible and
has a well-defined center p = p([A]) € M. We then define the collar to be

My, = {[A] € £|X([A]) < Ko}
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(The precise definitions of A(A) and p(A) are given in §4; the details of those
definitions are not important in this section.)

As noted in the introduction, given [A] € .#* we can choose A € & in
the gauge class [A] and identify (isometrically) T} 4.# with Hq = ker(d}) N
ker(d;) C Q'(Ad P). We will make this identification throughout the next
three sections. Accordingly, we will replace the notation H4 by T4, this
being more suggestive of a tangent space. In this section we will construct,
for [A] € .#),, an approximation T'4 to T4 and obtain estimates on ||[Id 74|,
where 74: TA — T4 is the orthogonal projection. Our estimates will rely on
three basic facts, the first two of which follow from Theorem 16 of [6] and the
third from Theorem 21(i) of [6].

Fact A. Given € > 0, N > 0, there exists Ag = Ag(e, N) such that the
curvature of each [A] € .#), satisfies

(3.1) sup ||Fal? —|Fal?| <ex™?,
B(p,NX) .

where A = A([A]), B(p, N)) is the ball of radius N A about the center p of
[A], and F) is the curvature of the standard instanton of scale A on R*, pulled
back to B(p, NA) by any choice of normal coordinates and local gauge about
p. Here one can take |F|? to be defined either by the metric on M or by the
Euclidean metric in the normal coordinate system defining F); the assertion
is true for either interpretation of the norm.

Fact B. There exists a constant C such that, given 6 > 0, there exist
ro > 0 and Ag = Ag(6) > 0 such that the curvature of each [A] € M), satisfies

[Fal(q) S OX*0/r*=%,

whenever r = dist(g, p([A])) < ro (here A = A([4])).

Fact C. Let (0 C M be the complement of the ball B(p, /roA), where
p = p([A]) and X = A([A]). Then there are constants Ao and ¢ such that each
[A] € #),, satisfies

/ |Fal® < A2
9]

We will also need the following simpie lemma.

Lemma 3.1. Let Z = grad(¢) be a gradient vector field and A a self-dual
connection. Then

(a) d%(izFa) =0,

(b) d3(izFa) = 52, o (H9);k8” A (ie, Fa).
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Here ¢z denotes contraction with Z, {e;} is any local orthonormal basis of
TM, {67} is the dual coframe, and H¢ is the traceless part of the covariant
Hessian H¢ of ¢.

Proof. (a) We have #(1zF4) = d¢ A +Fy, so

d*A(izFA)=:l:*dA(d¢/\*FA) =:l:*(d¢/\dA*FA)=0.

(b) Fixing p € M, it suffices to verify this under the assumption that
(Vej)p = 0. Let V denote both the Levi-Civita connection on M and its
extension, by tensoring with V4, to a connection on Ad P-valued tensors.
Then, at p,

da(izFa) = 00 AV, (izFa) = 0 A(iv,2Fa +1zViFa)
= .(H¢)jk9j A (iekFA) - iz(ej A VJ'FA) + VzF4.

The middle term on the right is —iz(d4F4) = 0 by the Bianchi identity.
Using Vz(p—) = 0 we then have

d4(izFa) = (H)jkp— (07 A (i, Fa)) + Vz(Fy),

and the last term vanishes since A is self-dual. Finally, a little algebra shows
that the remaining term is precisely the expression in (b). q.e.d.

Notation. Choose 0 < § < ¢ and let g, A\g = Ag(§) be as in Fact B with
Ao £ rp < one-half the injectivity radius of M. Also, fix a function b € C§°(R)
with 0 < b(t) <1, b(t) =1 fort € [0,1], b(t) =0 for ¢ > 2, and ¥(t) <O for
all ¢.

Given [A] € #,,, we will consider the local geometry of M around the
center point p = p([A4]). Thus we let r denotes the distance to p (a function
on M), B = B(p,2ro) denote the ball of radius ro around p, and (1 denote
the annulus {ro < r < 2rp}; xp and x _ will denote the corresponding char-

acteristic functions. Let § be the cutoff function B{r) = b(r/r¢); note that 3
is supported in B and its gradient is supported in 2.

In this and subsequent sections we will use the letter ¢ for a universal
positive constant depending on the geometry of M and on rg, but not on
[A] € A\,. Thus, for example, we will use the inequalities |xpdr| < cxp
and | XBF§k| < erxpg, where I‘;k are the Christoffel symbols in any normal
coordinate system centered at p. The value of ¢ will be constantly updated;
for example when ¢ is multiplied by 2 the result is immediately renamed c.
Similarly, the value of Ag will be decreased as needed.

Definition 3.2. (a) Given p € M and a € T,M, let fo be the unique
function on B such that

(1) fa is linear in some-—and hence any-—normal coordinate system cen-
tered at p.
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(i) fa(p) =0,
(iil) (grad fa)(p) = a.
(b) Given [A] € .#), with center p and scale A, let X, Y, denote the vector
fields

(3.2) X = grad(B(r) - 3r%), Ya = grad(B(r) fa)-

These vector fields will appear frequently in the next several sections.
(¢) Define

Ta = span{ixFa,iv,Fala € T,M} c ' (Ad P)}.

The assignment A — T4 is & -equivariant, so induces a vector bundle T4
over .#),; the fiber T[ 4] is isomorphic to T4. We refer to both T4 and T[ A]
as the approrimate tangent space.

More Notation. Given [A] € .#,,, we let {z} denote an arbitrary choice
of normal coordinates centered at p. We use the {z*} for our computations,
the results of which are independent of the choice of {z*}. We use the normal
coordinate system to identify T,M with R4, so a = 0,0/087%, fa = Y a;z’,
and r2 = Y (z%)2. Also we adopt the convention of implied summation over
repeated indices.

We will show that, as A — 0, ||Id —74]] — 0 uniformly in [A4], justifying the
term “approximate tangent space”. The first step is to prove the following.

Proposition 3.3. Let [A] € #,, and let X and Y =Y, be as in Defini-
tion 3.2. Then

(a) d4(ixFa) =dy(ivFa) =0,

(b) ldz(xFa)llf < eAt=25,

(o) 43y Fa)l < clal?A2.

Proof. X and Y have the form Z = grad(Bf), where f is either 37? or
fa. Hence Lemma 3.1(a) immediately gives statement (a). For {b) and {c),
we apply Lemma 3.1(b) to ¢ = 8f. We have

H(Bf) =Vd(Bf) = (HB)f + (dB ® df + df ® dB) + B(H[),
so Lemma 3.1(b) gives the pointwise bound
(3.3) lda(izFa)l < (|/|HB| + 2|dBl |df | + BIHO f)| Fal.
Now
dB = ry ' (r /7o) dr,

Vdp = rg 26" (/7o) dr ® dr + 5 'b' (v /r0)Vdr,
Vdr = r~(z*Vdz* + dz* ® dz* — dr ® dr).
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Since Vdz* = —F;'.k dz* ® dz* and r~1 < ¢ on (1, we have
(3.4 @f Sex_,  HOSISIHBISex .
Substituting into (3.3) we find

ld4 iz Fa)| < ex_ (11 +ldfDIFal + exBlHO f{1Fal,
whence
(65)  VaxGzFaI3<c [ (f1+ VAP +e [ 1HIPIFAP.

We apply this in two cases.
Case 1. Taking f = 1r? (i.e. Z = X), we have |f| < ¢r?, |df} < cr,
S0 XQ(|f| + [df]) < eX - We also have Hf = z'Vdz' + dz* ® dz?, and

xBlg — dz* ® dz*| < xp - cr?, so xg|H f| < xp - cr?.

Case 2. Taking f = a;2° (i.e,, Z = Ya) we have [f| < |a|r, |df] < cla], so
x S+ 1dfl) < x  -cla], and xslH°f| < xB|Vdf| < x5 - clalr.

In each case we can substitute the appropriate bounds into (3.5) and esti-
mate the integrals using Fact B. First, we have

(36) / |FAI2 < C/\4—26/ T26-8 < C/\4—26.
0 0

Next, we bound the integrals over B by writing B = Bj U (B — B,,), where
By = {r < A}, and using Fact B on the annulus B — B). Thus for p € Z,

/ rP|Fal? < c/\”/ [Fal? +c,\4—25/ P58
(3.7) B B, BB,

< AP + A" Psgn(p + 26 — 4)(7”"’25—4[;‘“),
since F4)? < ||F4))% < 872, In Case 1, (3.5), (3.6) and (3.7) yield
Bi 2
lldaGxFa)ll2 < eA2 4 (A% + A28,

and statement (b) of the proposition follows. Similarly, in Case 2, (3.5), (3.6)
and (3.7) plus the fact that 4 — 26 > 2, give statement (c). q.e.d.

We wish next to consider the L? inner products of the iz F4. For this we
will need two lemmas.

Lemma 3.4. For any two vector fields Z and Z', and any two self-dual
bundle-valued 2-forms F and F',

(izF,izg F'Y + (iz:F,igF') = (Z,2')(F,F')
pointwise. In particular,

(3.8) (iF.izF) = §(2,2)\FP.
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Proof. Let ez denote exterior multiplication by the 1-form dual to Z. The
well-known formula eziz: +iz ez = (Z, Z')-1d holds for bundle-valued forms.
Furthermore, ez is the pointwise adjoint of iz, and ez = — *iz*. Thus, since
* is an isometry and F = +F, F/ = +F’,

(izF,ile') + (ile,izF’) = (F, ez‘ile') + (*iZ' * F %1z % F’)
= (F, ezisz') + (eZ:F, ezF')
= (F,(eziz +izez)F) = (2, Z')(F,F'). qed.

In our estimates we will encounter integrals similar in form to [ hz'z?|Fy4|?,
where h is a cutoff function and {z*} are normal coordinates at p(A). The
next lemma shows that as A — 0 these integrals approach the corresponding
integrals on R%.

Lemma 3.5. Let h: [0,00) — R be piecewise continuous with compact
support. For each multi-index I = (i1,--- ,1n) let 7 be the corresponding
monomial on R* and let S C R* be the unit sphere. Define constants K; =
fsz! andempn = [5° 48h(t)t* ™3 (1+42) "4 dt (f n—m+3 < —1 we assume
supp(h) C (0,00)). Now let {z*} be normal coordinates on M at p(A). Then
asA=AxA)—0

lim [/\m""/ h(r/)\)zl'r_m|FA|2] =cemnKy,
A—0 M

uniformly in [A] € # . In particular, when n = 1,2 this holds with K; = 0
and K,'j = %ﬂ'zéij.

Proof. Choose € > 0 and suppose supp(h) C [0,N]. Let Ag = Xo(e,N)
be the constant supplied by Fact A, so (3.1) holds. In normal coordinates
the metric and the volume form satisfy g;; = 6;; + O(r?) and dv, = d*z(1 +
O(r?)), where d*z is the Euclidean volume form on R. Hence, writing |F|% =
%(E-,-,Fij), we have

‘ / h(r/A)z'r~™|F4|? dvg — / h(r/N)z!r~™|Fy|2 d*z

<e

/ R(r/A)zlr—mA"4d'z

Now |Fy|3 = 48X%(A% 4 r2)~4; see equation (3.4.6) of [10], for example. If we
change variables to u = z/), set ¢t = |u|?, integrate in polar coordinates, and
multiply through by A™~" then we obtain

')\m_"/h(r/)\)zlr_mlFA|2 — Kieman| < ce.

This proves the lemma.
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Proposition 3.6. For each € > 0, 3y > 0 such that for all A with
MA) =X < X,

(a) lliv, Fall3 = 472[a]*(1+ O()?)),

(b) lixFall3 = 8722%(1 + O(e)),

(€) lixFasty,Fa)l < cellixFalllliv, Fall,
where, in (b), we mean |||ixFal|3 — 872)2| < eAZ.

Proof. Let ¢,9 be functions equal to either 172 or a;z¢, so Z = grad(f¢)
and Z' = grad(By) are either X or Y = Y,. By the product rule and (3.4),

(2,2") — B*(de, dy)| = |(dB, dydp + Pody + fipds)|
< e(|vg] + ld(@v)x_

Now let p = deg(¢y¥) (so p = 2,3, or 4) and let m = homogeneity of |a|
in ¢¢ (so m = 0,1, or 2). Then |¢¥| < c|a|™rP and |d(¢¥)| < cla|™rP~ L.
Multiplying the inequality above by %|F|? and using (3.8) gives

|62F, iz F) ~ §6°(dé, dv) FI*| < ol FI*[a[™(r? + 77~ )x_
< c|F|?|a™x
< clFPlalmx

since 7 and r~! are bounded on Q. Integrating over M and using equation
(3.6) yields

(3.9) (izFa,izFa) =3 / B2|F4|?(d, dv) + O(|a|™ 14~ %),

We will apply this in each of the three cases.
(a) Taking ¢ = ¢ = a;z’, we have p =m = 2, d¢ = dy) = a;dz’, and hence
(de, ) = gYaa; = |a|2(1 + O(r?)). Then (3.9) gives

(iyFiyF) = gla’ ( / BAFIP(1+0(r?)) + 0(,\4‘25))
= 3lal? (/ g2|F +0(,\2)) ,

where we have used (3.7) and the fact that 4 — 26 > 2. Now write 82 =
1-(1— f3%). Note that ||F||2 = 872, and 1 — 2 has support in M — B(p, o).
When A is sufficiently small we can then apply Fact C to obtain

llliy Fli - 47%|af?| < cla]?2%.

(b) Next take ¢ = ¢ = 37%, 50 p = 4, m = 0, dp = dyp = z'dz’, and
(d¢,dy) = g"?z2? = r? (in normal coordinates, gz’ = z* = g;;27). Choose
N > 1such that N?*~2 < ¢ and let Ag be small enough that Ny < 9. Then
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B=1on {r £NA} for A < Ao, so (3.9) gives

lixFIE = § [ 4r°1F1? +0(:¢%)

(3.10)

= %/ r?|FP? + %/ B2 F|* + O(A*~%).
r<NA r>NA

Now apply Lemma 3.5 in the case h = characteristic function of [0,n], n =0,
m = -2, to find
N
lim (A‘2/ r2|F|2) = vol(53) / 48t°(1 + %) dt
A—0 r<NA _ )
3N4+3N%2+1
-

by a direct calculation. But (3N% + 3N? +1)(N? +1)~3 < 7TN~2% < 7¢, so,
by taking Ap sufficiently small,

%/ r2|F|? — 87%\?
r<NAX

On the other hand, using Fact B as in (3.7) we obtain

= 1672 [1

(8.11) < 8eA?.

(8.12) / B2r2|FI? < A2 (NA)2 -2 < el
>N

The result now follows from (3.10) and (3.11).
(c) Take ¢ = 2r? and ¢ = a;2*, so p =3, m = 1, and (d¢,dy)) = . (3.9)
gives

(ixFyivF) = } [ FUIFP + O(alx™=%).

Choose N > 1 such that N29—3 < ¢, and choose Ag small enough that Ny <
ro. Then, if A < Ag, we have

[ouirr= [ wirp+ [ pire,
r<NA r>NA
For the outer integral, we apply the argument used in (3.12), obtaining

/ g\ FP?
r>NA

For the inner integral, Lemma 3.5 implies

lim (,\—1 / x*|F|2) =0,
A—0 r<NA

so, for A sufficiently small, we have | f 9|F|?| < ¢]a|A. Putting all this to-
gether,

< cla|Xe.

Wix F iy F)| < cla|)e
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for A sufficiently small. By parts (a) and (b), |[¢y F|| and [}¢x F|| are commen-
surate with |a| and A, respectively. Hence statement (c) follows. q.e.d.
The next proposition shows that the projection 7: T4 — T4 satisfies w4
Id +O0(\'79%). '
Proposition 3.7. There exist constanits ¢, g > 0 such that if Z =
grad(B(3aor? + fa)) and XA < Xg then

i

(3.13) (1 = 7a)izFall < c(laolA2~° + |a|A),
(3.14) |TaizFall = llizFal/(1 4+ O(\~%)).

Proof. For any w € Q1(Ad P), (1 — m4)w is the projection of w onto the
L2%-orthogonal complement of the harmonic space. This can be expressed
in terms of the Laplacians and Green operators of the fundamental elliptic
complex, namely (1 — 74)w = daGYd%w + (d3)*G4d w. Taking w = iz F
we have d%w = 0 by Proposition 3.3(a). Hence

(1~ 7ma)wll = II(d3)* Ghdzwl3
= (G%d w,dz(d7)* G4dzw) = (Gidzw, dzw).
By Proposition 18(ii) of [6] there exist Ag, % > 0 such that if A < Ao then the
first eigenvalue of d;(d)* is > p. Therefore
(1 —7a)izFll3 < p'||dgizFl3,

and (3.13) follows by Proposition 3.3. Combining (3.13) and Proposition 3.6,
we have ||maiz F|| < ||izF|| + (1 —7a)izF|| € (1+cA1=%)||izF|}; the reverse
inequality is similar and we obtain (3.14).

4. The differential of the collar map

In this section we will derive some estimates on the differential of the collar
map ¥ (0.4). We first recall Donaldson’s precise definition of this collar map.
Let b € C§°([0,00)) be the cut-off function used in §3. For any s > 0 and
any two points z, y in any Riemannian manifold, we define the bump-function

¥s(2,9) =b(d—is-t—(£’i))~

s
Definition [6, Definition 15]. For a connection A on a given complete
oriented Riemannian manifold with metric g and volume form dv,, define

(4.1) Ra(s,2) = [ 1@l Fa@)l doy(w),
(4.2) MA) = K~ 1inf{s|Ra(s,z) = 47 for some z}.
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Here K is that constant which makes A(standard instanton on R*) = 1. (K
depends on b; were b replaced by the characteristic function of {0, 1], K would
be 1.) Because K will occur frequently, it will often be convenient to work
with X = KX instead of A. As X (or A) — 0 we approach the “boundary” of
A (in a sense we will make precise in §5).

By applying the implicit function theorem to (4.1), Donaldson shows that
each sufficiently concentrated self-dual connection A has a unique well-defined
center p = p(A) € M. The quantities A(A) and p(A) are characterized by the
equations

(4.3) Ra(X(A), p(A)) = 4,
(4.4) %’%(X(AM(A)) ~o.

Both A and p are gauge-invariant, so for A¢ sufficiently small there is a well-
defined map

(4.5) U: M, — (0,00) x M

given by ¥([A4]) = (A(A),p(A)) on the collar A, = {[4] € M|A(A) < Ao}.
Donaldson proves that ¥ is a diffeomorphism [6].

We will estimate the differential of ¥ by writing ¥. = (A, p.) and exam-
ining first A, and then p..

Notation. For fixed p and ), write r = r(y) = dist(p, y), and set v(y) =
b(r/X). In a fixed normal coordinate system {z?} centered at p we write
y* = z*(y), v = 0i, and ~y;; = 8;0,7. These derivatives are supported in the
annulus {A < r < 2X} and are given by

(4.6) Nily) =X 8 (r/Ndir =X 6 (r/ XNy,
A7) ) =3 Ny e+ X (/D)8 /7 — vy [0}

Proposition 4.1. Let A; = A+tn+ O(t?) be a path of self-dual connec-
tions. Then [n] = m.n € Tja).# satisfies

f(’l, iV’yFA)
(V. V(r2)|Fal?

Furthermore, there exist Ag > 0 and ¢ > 0 such that [A] € &\, implies

(4.8) Auln] = —4/\f

(4.9) 1< —/(ny,V(r2))|FA|2 <e.

Remark. Donaldson essentially derives this in the course of proving Corol-
lary 17 of [6], but he makes a slight mistake (his first equality should be an
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inequality) that is of no consequence to his result but is important to us, cor-
responding to the denominator in (4.8). Therefore we give the complete proof
here.

Proof. Differentiating (4.3) with respect to ¢, and writing X = A(A), p =
p(A), X = X(At), and p; = p(A¢), we have

d
0= —Ra, (A, pt)lt=0

dt
d 8RA dp OR A d/\t
dtRA‘( p)+ axi( P T 3s \p) g dt

The middle term vanishes by (4.4), so

d&, _ —(d/dt)Ra, (%, p)le=o
dt *=° " " (9R4/0s)(\,p)

Since the curvature of A; is F; = F4 + tdan + O(t2), the numerator on the
right-hand side of (4.10) is, from (4.1),

GRA (Dm0 =2 [ 2(dan £0) =2 [ (r.d3080),

(4.10) ] =

with
(4.11) 4y (vFa) = A4 Fa —tyyFa = ~tu,F4.
Similarly, differentiating (4.1) with respect to s gives

) =~ [ RGP = 5 [(T1,9r)IEAP

Multiplying the numerator and the denominator in (4.10) by X, we obtain
(4.8). Moreover, by Lemma 3.5 and the monotonicity of b,

[ @1 RIEa? = - [ ¥ a/RIEAL

approaches a (strictly) negative constant, uniformly in A, as X — 0. Hence
(4.9) follows as well. q.e.d. '

The next task is to derive formulas for p. analogous to those just obtained
for A.. Up to this point, we have fixed p € M and used normal coordinates
centered: at p; we must now vary the center point p. The next lemma deals
with this geometric complication.

Fix a number o with 2rg < injectivity radius of M. Let {z*} be normal
coordinates on the ball B, (p) centered at p. Given a point y € By, (p) with
coordinates y* = z*(y) let p(-) = dist(y, -) be the distance function from y and
set » = p(p). With this notation we have
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Lemma 4.2. There exists a constant C depending only on the geometry
of M such that, for each p € M and y € B, (p),
(@) 2&(p)=-y'/r,
2 845 i
b) |52 () - % +L¥ | <or.
Proof. Let o(t) be the geodesic from y = ¢(0) to p = o(1) parametrized
proportionally to arclength; i.e., if T = o¢’(t) is the tangent vector to o,
then T} = p(p) = r. Let v,u; € T,M be such that exp,(v) = p and

(expy)ev(us) = (8/82*)(p). For each ¢ we may consider the one-parameter -
variation

(4.12) oi(t) = exp, (t(v + su;)).

Since o is varied through geodesics, the variational vector field U; = (8/9s)o?
is a Jacobi field along o, and satisfies U;(0) = 0 and U;(1) = (8/9z")(p). The
formula for first variation of arclength (4, equation 1.3] gives

%) -
(4.13) a2 =P (U1, T(D),
z P
since o is a geodesic. But T'= —3*3/8z* in normal coordinates and gi;(p) =

dij, so we obtain (a).
Let V; denote the vector field 3/3z* on B, (p). If we replace p in (4.13) by
an arbitrary point ¢ € By, (p), we obtain

(4.14) Vi(p)lo = p(a) " (Vi, T)lq-
Applying the vector field U; to (4.14) gives
UiVi(p)la = {=p72Us(0) (Ve T) + o [(V; Vi, T) + (Vi, Vi, T} g-

When ¢ = p, we obtain U; = V; = 8/827, Vy,V; = I'%8/0z%|, = 0, and
Vuy,T = VrUj since U;,T are ol of 3/3s,0/8t. Therefore, using part (a),
we have

a%p
91027 |,

(4.15) = —r 3%y + 17N Vi, VUl

But, from (4.12) it follows that we may write U; = tW, where W = W*9/dz*
is some vector field with constant coefficients with respect to the normal coor-
dinates {2z'} centered at y; in these coordinates, W = U;(1). Hence, in these
coordinates, writing T = p*d/82*, we have '
0

VrU; =W + tPiWkVa/az-'W

—_ ipa7 k!l
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Now set t = 1. Since p(p) = r and |T%;(p)| < Cr, it follows that
(4.16) |VrU; — U;(1)] < CrHW| = Cr?|U;(1)| = Cr?,

noting that U;(1) = (8/9127)(p). Finally, (V;(p),U;(1)) = (Vi(p), V;(p)) = bis,
so statement (b) follows from (4.15) and (4.16).

Corollary 4.3. Let Z be any vector field on M and let A, = A+
traizFs + O(t?) be a path of self-dual connections. Let p and X denote the
center and scale of A. There exists a constant ¢, independent of A and Z,
such that if {z'} are normal coordinates centered at p, then

2 (Gaan) - [avwre

Proof. Write F = F4. Using Lemma 4.2 and (4.6), we have

-2

Sell(1—ma)izFal.
t=0

%b(, /N = X W (/N r = =

Since Fy = F + tdamaiz F + O(t%) we find
d (ORa, ~ _d T2 ‘ .
E ( axi (Aap)) =0 - _E 71|Ftl - 2/71(dA7rAZZFaF)'
Integrating by parts and using (4.11), the last expression becomes
/Z(WAizF, Z.V,,'.F).

Writing 74z F = izF — (1 — w4)izF, Lemma 3.4 shows that the integrand
above equals (Z, Vy)|F|2 — 2((1 — 74)tzF,iv,F). Hence

d [ORa,
E( o ) —/(Z, V)IF?

Now +; has support on {) < r < 23}, where

A AV N EA TR () Ly,
(b (X) . Ab (X) Y/ )Vr+/\b (X) TVy’

is bounded by a constant, so ||X2iv,,iF||2 < Cl\F|l2 € C, and the result
follows.

We will also need a statement concerning the Hessian of R 4.

Lemma 4.4. Let H;; denote the Hessian (02R4/82327)(\,p). For X
sufficiently small, N2 H;; is uniformly invertible; i.e., there ezist Ao, ¢ > 0 such
that [A] € #,, implies

=2

. =2,
< 2U(L = ma)iz F|2}|A v, Fll2.

-2
M|V =

(4.17) e < NPH EE <€) VEeT,M.
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Moreover,
(4.18) AH,; = / A2y Fal? + 022,

where ~;; is as in (4.7).
Remark. In fact we will show that A2H;; — const - 6;; as A — 0.
Proof, Write (4.1) as

Raton) = [ (22) 1Far @) ),

where py(-) = dist(y,-). Letting 8; = 8/9z*, and writing p for py, we differ-
entiate twice to obtain

N Hy = / {b” (”—(X"—)) 9;p0;p + N/ (i’%”—)) a,-ajp} |Fal?.

By Lemma 4.2 and (4.7) we can write this integrelmd as {-X2"ﬁj + X¢i; 1 FI2,
where |¢;;| < Cr and supp(¢i;) C Byx(p). Hence

/ X, |FI? < X / FP? < X,
and we obtain (4.17).
To prove (4.18) we substitute (4.7) into Lemma 3.5 and find that
= )
}in}) [/szlFAP] = 247r26¢j/ (t3b" (t/K) + 3KV (t, K)t?)(1 + t%)~* dt
o J
= 247r26,'j/ (1 +t2)’4(—iE(Kt3b’(t/K))dt
0

o0
= _24rs, / Kt3b’(t/K)%(1+t2)‘4dt
0
= 616,'_7'.
Since b’ < 0 and ¥ < 0 somewhere, ¢; is strictly positive. Hence (4.19) follows
from (4.17). q.e.d.
We finally obtain a statement for p, analogous to the one for A, given in
Proposition 4.1.
Proposition 4.5. There exist ¢,A\g > 0 such that if [A] € #,,, and

Ay = A+ tmaizFa + O(t?) is a path of self-dual connections, then for any
vector field Z on M,

(419) |(peP (raizFa) + CH)G | [ YET3IEA? + mid(eaiaF)|

<cll(1 = ma)izFall,
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where v
(4.20) mg =X / W (/N | Fal2.

Here X = X(A), ~; is given by (4.6), (p.)’ are the components of the image
of p« in Tp(ayM with respect to normal coordinates {z*} centered at p(A),
and H;; is the Hessian (92R4/87'0y*)(, p).

Proof. Write A; = A(A:), pr = p(4:), A = A(A4), and p = p(A). Differen-
tiating (4.4) yields '

d (OR4,
(—12( e (/\t,Pt)) 'm0

_ [1 (f”“f &, )) LM ZWp O ALY )‘“‘]

0=

dt \ Oz ey Bsax"
t=0

By Lemma 4.4, H;; is invertible, so we can solve this to obtain

dp} d OR, - .
wan G =0 {3 (55| o
dt |,y &t 07 /|,
—20%Ry
X G B o raizF) |
Differentiating (4.1) and using Lemma 4.2, we have
2 .
2 O?Ra _ / "1 /32 + 87 Ry | Fal?
030t
(4.22)

=mo+ [ V6D IRAP.

But this last term vanishes, since by (4.1), (4.4) and Lemma 4.2
0 ' ——1

@) 0= [ iR =X [Ve/Mer.

Next, we may use Corollary 4.3 and (4.17) to replace %(9R4,/02") in (4.21)
by [(Z,V:)|Fal? at the cost of the term c||(1 — 74)izFa)| appearing on the
right-hand side of (4.19). Thus substituting (4.22) and (4.23) into (4.21) we
are done. ’

5. The metric on the collar

We now combine the results of the previous two sections to show that the
metric on the collar is asymptotic, in a C° sense, to a product metric (Theorem
II). This leads to a description of the metric completion of .# (Theorems III
and IV).
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Definition 5.1. Given [A] € .#,, with center p and scale A, and given
(ag,a) € R x Ty M, we set :

Z(a0,0) = V(B(32 a0 + fa)),
and define a4: R x T,M — T4 by
aA(GOsa) = —iZ(aov_a) FA,

where 3,1, fo and f‘A are as defined in §3.

Observe that a4 depends on &-equivariantly on A, so defines a bundle map
a taking T(x,p) (R x M ) to Tj4) where [A] = ¥~1(),p). Since the harmonic
projection m4: T4 — T4 induces a bundle map n: T.# — T.#),, we can
consider the composition

T(,\,p)(RXM) 5 T[A] LT/[

Combining this with the differential of the collar diffeomorphism ¥ (cf. (4.5))
gives a diagram

TM,\O-——-—->T ((0,20) x M)

(5.1) \MA A

We will use the results of §§3 and 4 to show that moq is an approximate inverse
to ¥, in the sense that (5.1) commutes up to terms which are O(A!~?).

Proposition 5.2. There ezist ¢, \g > 0 such that [A] € #), implies

(2) [Ms[raca(ao, a)] — a0l < c(lao| + |a) A2,

(b) |ps[Taca(ao,a)] — a| < c(lao] + |a])A*—5.

In other words, ¥, omoa=1d- (1 +O(A!~ 5)).

Proof. (a) Write F = F4 and take n = ma04(a0,a) = —izF+(1—74)izF
in Proposition 4.1. When A is sufficiently small, # = 1 on supp(v), so using
Lemma 3.4 we may replace (iz F,iv+F) = 2(Z, V4)|F|? by ao(Vr?, V)(F|?
+ 3a;(Vz*, V~)|F|?. Hence the numerator of (4.8) is

/(ﬂydif) = — %ao /(VTZ, Vy)|F|? - %ai/‘(dﬂii,d’y)lFIZ
+ [(@ - ra)izFivF).

Now (dz’,dv)(y) = X_lb’(r/X)g"fyj/r = X ' (r/X)y/r, so by (4.23), the
middle integral above vanishes. Therefore, multiplying (5.2) by —42, dividing
by the denominator of (4.8), and applying (4.9), we see that
[As[m) — a0l < eA{((1 = ma)izF,ivF)2)
S cll(1 = ma)iz Fll2ll Aoy Fllz.

(5.2)
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But V4| < ¢A~! by (4.6), so [|MyFll2 < cf|Ffl2 < ¢. Part (a) now follows
from Proposition 3.7.
(b) We apply Proposition 4.5. Again take A small enough that =1 on
supp(~). Then, on supp(¥y),
(Z, V%) = (d(3A™ aor® + a;97), d i)

= (A 'aoy’ + a5) dy’, irdy")

= (A" laoy’ + a;) (%5 + ik (97F — 5x))-
But g?* — §;5 = O(r?), |vik] < cA~2, and X < r < 2 on supp(y), so

(2,97%) = (A" a0y’ + aj)vi; + O(lao| + lal).

Thus, since [ |F|? <c,
<2 2 <2 2 ap o2 2 2
[ R IR = a5 [ KPP+ 2 [T 0F12 +O((fao + [al)2)

By (4.18}, the first term on the right is XzHija,- + O(|a]A?%). From (4.7) we
compute X2yj 75 = b"(r/X)y*, so the second term on the right is agKm;,
where m, is as in (4.20), and K is as in (4.2). Therefore
53 / X2, V3)|FI? + mXu(maizFa)
' 2 .

=A H—gjaj + Kmi(Au(matzFa) +ap) + O((lag| + |a|)A2).
Now |m;]| is bounded (in fact Lemma 3.5 shows that m; — 0 as A — 0), so we

may use part (a) to bound the second term on the right-hand side of (5.3).
We can then combine (4.19), (5.3), (4.17) and Proposition 3.7 to obtain

[(p+) (raizFa) — aj] < c(laolA™% + [a]),

and (b) then follows from the definition of 4.

Proof of Theorem 11. Since Proposition 3.7 shows that 74 o a4 is an iso-
morphism, it suffices to prove (0.5) for all W of the form w4izF, where
iz F = as(ag,a). But then

W = (ag,a) + O((Jao] + |al) A7)
by Proposition 5.2, and therefore
(L™ £)(W, W) — 47% (203 + |al?)| < eA'™(lao)® +[a]?) < A1 -8 (U™£) (W, W).

On the other hand, Propositions 3.6 and 3.7 imply that for Ao sufficiently
small,
(W, W) — 42 (203 + [al?)| < 3e(¥"4)(W,W).
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Therefore taking A¢ small enough, we obtain |g(W,W) — (¥*£ )(W, W) <
e(¥*4£ )(W,W) and the result follows.

Proof of TheoremsIIl andIV. Let [A] € # be areducible connection and
let U be the closure of a neighborhood of [A] as in Theorem 1. The form (0.2)
of the metric shows that the completion of U™ = U — {[A]} is obtamed simply
by putting the vertex [A] back in; i.e., the completlon of U is U itself. It
follows that .#* is identical to the completion .Z of (/, ).

Now let {[A;]} be a Cauchy sequence which does not converge in .#Z. By
Uhlenbeck's Compactness Theorem [8, Theorem 8.36] we have A; = A([4;]) —
0, so the sequence eventually lies in the set .#), with ¢ as in Theorem II.
The inequality (0.5) then implies that for 7, j sufficiently large

dist([A;], [4;]) > 272(2| X — Aj|? + dist(ps, j)?),

where p; = p([Ai]) € M. Hence {p;} is also Cauchy, converging to some
po € M. 1t follows that the set of equivalence classes of Cauchy sequences
not converging in .# is in 1-1 correspondence with M, and that .# is ho-
meomorphic to .#Z Uy ([0, Ag) X M) (which is compact by Uhlenbeck’s theo-
rem). Thus the metric topology on . is independent of the choice of collar
map ¥ (i.e., independent of the details of the cut-off function b used to define
A and p), so A is a topological manifold-with-boundary in a natural way.
The induced smooth structure on .# Uy ([0, Ag) X M) is also independent of
the choice of ¥, so .# inherits a natural smooth structure. The function A
on .# extends smoothly to .# and we have IM = £ — # = {)\ =0}. In
particular, ./ is incomplete, since instantons of scale size A = 0 do not exist
in.A#.

We can define a Riemannian metric & on A by declaring # to be
472(2d)\? @ g) along .4 and to be the L%-induced metric on the interior.
Theorem II shows that & is continuous. The restriction to gz to vectors tan-
gent to 8.4 is 4n2g, independent of the choice of ¥ again. The same theorem
also shows that if o is a curve lying in .#,, and l;(0), l2(0) are the lengths of
o with respect to g, ¥* £ respectively, then 1 —¢ < Iy(0)/l3(0) < 1+¢. Since
the distance to 8.4 with respect to ¥*£ is exactly V8n2 A, we conclude that
the distance with respect to & is asymptotic to V82 ). qed.

Theorem II shows that the metric ¢ is CP-asymptotic to the product metric
¥*/£ as one approaches 8.4 . It is natural to ask whether this is true for the
derivatives of g; i.e., is & C'-asymptotic to a product metric? For I = 1
this would imply that 9.4 is a totally geodesic submanifold of A, and for
I = 2 it would additionally imply that the curvature of .# is asymptotic to
the curvature of the cylinder [0,1] x M. For the case M = S* the results of
[9] give a complete answer.
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Proposition 5.3. Let .#, be the moduli space of k = 1 instantons on S*
with its standard metric. Then

(a) OM 1 C My is totally geodesic and is C™-isometric to the (round)
4-sphere of radius 2m (which has constant curvature % /7%),

(b) along M 1, the sectional curvature of M7 in any two-plane spanned by
one vector tangent and one vector normal to d.4 1 is &/ '

Proof. Part (a) is contained in Corollary C of [9]. For part (b) we use the
fact that .#) is radially symmetric and conformally flat; i.e., its metric takes
the form 92(p) 332_, (dz%)? ([9, equation 6.5); here p = |z]). From this we
deduce that the scalar curvature of .#; at the boundary is the limiting value
Soo Of 8 = —d9p™3([2¢" + 8p~ ¢’ + ¢~ 1(¢')?], and from the formulas for ¢ in
[9] one calculates 8o = 3/n2. Then part (a), together with radial symmetry,
implies (b). (A completely different derivation from that in [9] of the metric
on M, as well as a different proof of this proposition, appears in [5].) g.e.d.

Proposition 5.3 essentially shows that for M = S* the metric on the collar
is asymptotic to a product in the C! topology, but not in the C? topology.
At present the authors do not know if this is the situation for other M; in
particular whether it is generally true that 3.4 is totally geodesic.

Appendix

Our description of the geometry of the cones .# was obtained in §2 by
reducing the problem to one of finite-dimensional Riemannian geometry. The
results of that section can also be obtained directly (indeed, our original proof
of Theorem 1 was completely analytic). Although the geometric approach is
easier and conceptually clearer, it is important to bear in mind the fact that
each statement about the geometry of M s equivalent to a statement about
gauge fields on M. In this appendix we illustrate the analytic approach by
giving a second proof of Lemma 2.1. (This proof generalizes that of Theorem
4.9 in {8].)

Lemma A.1. Let J = [®, ] be the infinitesimal isotropy representation
(2.3) and assume H'(M;R) = 0. Then for anyn € T[A]%N = #, (defined by
(1.13)) we have

(a) (n,®df) =0VfeC®(M),
(b) The 1-form w = (n,®) € L2(T*M) vanishes pointwise,
(¢) J? = ~Id, and T[A]/l~ decomposes as stated in Lemma 2.1.

Proof. (a) The Laplacian (g = d*d+1I on functions is an invertible elliptic
operator, so given f € C®°(M), there is a unique h € C*°(M) with Ok = f.
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Write B = k + h(zo), where kR € C®°(M) vanishes at zo. Then dO§h =
d(f — h(zg)) = df,, and hence

(n, ®df) = (n, ®dTgk) = (n,dA(0%)° (Bh))
= {n, (O0%) da(PA)).

Since n € Z%; is a solution of the distributional equation (1.6}, this becomes

(n, ®df) = (v, ®h)(z0)

and therefore vanishes since h(zp) = 0.
(b) For any f € C*°(M) and w = (5, ) we have, by (a),

<d*wvf) = (w»df) = (naq)df) =0,

which implies d*w = 0. Furthermore, d~w = (d7,®) = 0 because d;n =0
(n is tangent to the set of self-dual connections). Hence dw = *dw, so d*dw =
— % ddw = 0. Thus w is a harmonic 1-form and, since H!(M;R) = 0, we
conclude that w = 0.

(c) The fact that J? = ~Id now follows from (b), and the normalizations
|®]2 = 1 and [a, [b, ¢]] = (a,c)b — (a, b)c discussed at the beginning of §2. The
decomposition of T} A]/Z follows as in the proof of Lemma 2.1.
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